CV不存在了?Meta发布「分割一切」AI 模型,CV或迎来GPT-3时刻
CV不存在了?Meta发布「分割一切」AI 模型,CV或迎来GPT-3时刻机器之心 2023-04-06 12:41 发表于辽宁机器之心报道机器之心编辑部CV 研究者接下来的路要怎么走?「这下 CV 是真不存在了。< 快跑 >」这是知乎网友对于一篇 Meta 新论文的评价。如标题所述,这篇论文只做了一件事情:(零样本)分割一切。类似 GPT-4 已经做到的「回答一切」。Meta 表示....

CV不存在了?Meta发布「分割一切」AI 模型,CV或迎来GPT-3时刻
CV 研究者接下来的路要怎么走?「这下 CV 是真不存在了。< 快跑 >」这是知乎网友对于一篇 Meta 新论文的评价。如标题所述,这篇论文只做了一件事情:(零样本)分割一切。类似 GPT-4 已经做到的「回答一切」。Meta 表示,这是第一个致力于图像分割的基础模型。自此,CV 也走上了「做一个统一某个(某些?全部?)任务的全能模型」的道路。在此之前,分割作为计算机视觉的核心任务,....

7 Papers & Radios | Meta「分割一切」AI模型;从T5到GPT-4盘点大语言模型
本周论文包括 Meta 发布「分割一切」AI 模型;国内 20 余位研究者联合撰写大型语言模型综述等。目录Segment AnythingDynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical ReasoningA Survey of Large Language ModelsHuggingGPT:....

语言模型自己学会用搜索引擎了?Meta AI提出API调用自监督学习方法Toolformer
单一的大型语言模型或许无法实现 AGI,但如果它学会使用其他工具呢?在自然语言处理任务中,大型语言模型在零样本和少样本学习方面取得了令人印象深刻的结果。然而,所有模型都存在固有的局限性,往往只能通过进一步扩展来部分解决。具体来讲,模型的局限性包括无法访问最新信息、会对事实产生「信息幻觉」、低资源语言理解困难、缺乏进行精确计算的数学技能等等。解决这些问题的一种简单方法就是给模型配备外部工具,如搜索....

AI的未来不是大模型,也不是端到端:Meta向我们证明了这一点
「人类的可贵品质在于寻求和追随真理。」——西塞罗本周二,Meta 提出的人工智能 Cicero 成为了 AI 领域的热门新闻,通过和人玩在线版「外交」游戏,它锻炼了自己的技能成为高手,在玩过的不止一场游戏中排名前 10%。Cicero 结合了类似于 AlphaGo 的战略推理能力,和类似于 GPT-3 的语言组织能力。在每场比赛中,它都会查看比赛状态,各位玩家的对话历史,从而预测其他玩家的。它能....

世界首个!Meta AI开放6亿+宏基因组蛋白质结构图谱,150亿语言模型用两周完成
如今,在蛋白质结构预测领域,各大厂也出现了「百家争鸣,百家齐放」。今年,DeepMind 公布了大约 2.2 亿种蛋白质的预测结构,它几乎涵盖了 DNA 数据库中已知生物体的所有蛋白质。现在,另一家科技巨头 Meta 正在填补另一空白,微生物领域。简单来说,Meta 使用 AI 技术预测了约 6 亿种蛋白质结构,这些蛋白质来自细菌、病毒和其他尚未被表征的微生物。团队负责人 Alexander R....

AI挑战国际数学奥林匹克竞赛,Meta神经定理证明器拿到多项SOTA
Meta AI构建了一个神经定理证明器HyperTree Proof Search(HTPS),已经解决了 10 场国际数学奥林匹克竞赛 (IMO) 中的数学问题。 数学定理证明一直被视为构建智能机器的关键能力。证明一个特定的猜想是真是假,需要使用符号推理等数学知识,比简单的识别、分类等任务要难得多。近日,Meta AI 构建了一个神经定理证明器 HyperTree Proof Sear...

挖掘极致,将head数设置为特征数,Meta AI多头高效注意力模块更准、更快
研究者表示,他们提出的多头高效注意力 Hydra Attention 保留了注意力的可解释性等优点,能够同时提升基线 DeiT-B 模型的准确率和速度。得益于自身的泛化性以及从大规模数据中学习的能力,Transformers 成为过去几年自然语言处理领域的主导技术。并且随着 Vision Transformers(ViTs)的出现,视觉领域也出现了类似的趋势。但我们应该看到,在 NLP 中使用 ....

斯坦福、Meta AI新研究:实现AGI之路,数据剪枝比我们想象得更重要
Scale is all you need?No.在视觉、语言和语音在内的机器学习诸多领域中,神经标度律表明,测试误差通常随着训练数据、模型大小或计算数量而下降。这种成比例提升已经推动深度学习实现了实质性的性能增长。然而,这些仅通过缩放实现的提升在计算和能源方面带来了相当高的成本。这种成比例的缩放是不可持续的。例如,想要误差从 3% 下降到 2% 需要的数据、计算或能量会指数级增长。此前的一些研....

LeCun领导下的Meta AI,押注自监督
自监督学习真的是通往 AGI 的关键一步?Meta 的 AI 首席科学家 Yann LeCun 在谈到「此时此刻要采取的具体措施」时,也没有忘记远期的目标。他在一次采访时说:「我们想要构建像动物和人类一样学习的智能机器。」近几年,Meta 发表了一系列关于 AI 系统自监督学习(SSL)的论文。LeCun 坚定地认为,SSL 是 AI 系统的必要前提,它可以帮助 AI 系统构建世界模型,以获得类....

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
产品推荐
阿里云机器学习平台PAI
阿里云机器学习PAI(Platform of Artificial Intelligence)面向企业及开发者,提供轻量化、高性价比的云原生机器学习平台,涵盖PAI-iTAG智能标注平台、PAI-Designer(原Studio)可视化建模平台、PAI-DSW云原生交互式建模平台、PAI-DLC云原生AI基础平台、PAI-EAS云原生弹性推理服务平台,支持千亿特征、万亿样本规模加速训练,百余落地场景,全面提升工程效率。
+关注