【AI系统】轻量级CNN模型综述
神经网络模型被广泛的应用于工业领域,并取得了巨大成功。然而,由于存储空间以及算力的限制,大而复杂的神经网络模型是难以被应用的。首先由于模型过于庞大,计算参数多(如下图所示),面临内存不足的问题。其次某些场景要求低延迟,或者响应要快。所以,研究小而高效的 CNN 模型至关重要。 本文将介文绍一些常见的...

加载CNN保存模型
加载CNN保存模型代码:from tensorflow.keras.models import load_modelnew_model = load_model('./mnist_model/final_CNN_model.h5')new_model.summary()输出: Layer (type) Outp...
CNN模型验证和CNN模型保存
CNN模型验证和CNN模型保存代码:test_loss,test_acc=model.evaluate(x=X_test,y=mnist.test.labels)print("Test Accuracy %.2f"%test_acc)输出:10000/10000 [======&#...
算法金 | 秒懂 AI - 深度学习五大模型:RNN、CNN、Transformer、BERT、GPT 简介
1. RNN(Recurrent Neural Network) 时间轴 1986年,RNN 模型首次由 David Rumelhart 等人提出,旨在处理序列数据。 关键技术 循环结构序列处理长短时记忆网络(LSTM)和门控循环单元(GRU) 核心原理 RNN 通过循环结构让网络记住...

图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
一、图神经网络(Graph Neural Networks, GNNs)概述 图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,GNNs能够捕获图数据中的节点特征、边特征以及图的整体结构信息。这使得GNNs在社交网络分析、推荐系统、生物信息学等领域具有广泛的应用...
Python基于卷积神经网络CNN模型和VGG16模型进行图片识别项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。 ...

计算机视觉借助深度学习实现了革命性进步,从图像分类到复杂场景理解,深度学习模型如CNN、RNN重塑了领域边界。
计算机视觉,作为人工智能领域的重要分支,致力于让机器“看懂”世界,通过图像和视频理解与分析来模拟人类视觉系统。随着深度学习技术的兴起,计算机视觉经历了前所未有的变革,从基础的图像分类、物体识别,到复杂的场景理解、行为分析,深度学习模型以其强大的学习能力和泛化能力,重新定义了计算机视觉的...
【自然语言处理NLP】Bert预训练模型、Bert上搭建CNN、LSTM模型的输入、输出详解
一、BertModel的输入和输出 from transformers import BertModel bert=BertModel.from_pretrained('bert-base-chinese') out=bert(context, attention_mask=mask)...
CNN依旧能战:nnU-Net团队新研究揭示医学图像分割的验证误区,设定先进的验证标准与基线模型
这篇论文研究了在3D医学图像分割领近年引入了许多新的架构和方法,但大多数方法并没有超过2018年的原始nnU-Net基准。作者指出,许多关于新方法的优越性的声称在进行严格验证后并不成立,这揭示了当前在方法验证上存在的不严谨性。 揭示验证短板:深入探讨了当前医学图像分割研究中存在的验证不足问题,特别是在新方法与旧基准的比较中缺乏严格的科学验证和不公平的比较基准。 系统性的基准测试:通过广泛的实...

MATLAB|【免费】融合正余弦和柯西变异的麻雀优化算法SCSSA-CNN-BiLSTM双向长短期记忆网络预测模型
主要内容 该程序实现多输入单输出预测,通过融合正余弦和柯西变异改进麻雀搜索算法,对CNN-BiLSTM的学习率、正则化参数以及BiLSTM隐含层神经元个数等进行优化,并对比了该改进算法和粒子群、灰狼算法在优化方面的优势。该程序数据选用的是一段风速数据,数据较为简单,方便同学进行替换学习。程序对比了优化前和优化后的效果,注释清晰,方便学习,建议采用高版本matlab运行。 ...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。