文章 2024-06-22 来自:开发者社区

RNN、LSTM、GRU神经网络构建人名分类器(二)

RNN、LSTM、GRU神经网络构建人名分类器(一)+https://developer.aliyun.com/article/1544720?spm=a2c6h.13148508.setting.18.2a1e4f0eMtMqGK 构建RNN模型 1构建RNN模型 ...

文章 2024-06-22 来自:开发者社区

RNN、LSTM、GRU神经网络构建人名分类器(一)

RNN、LSTM、GRU神经网络构建人名分类器 案例介绍 关于人名分类问题: 以一个人名为输入, 使用模型帮助我们判断它最有可能是来自哪一个国家的人名, 这在某些国际化公司的业务中具有重要意义, 在用户注册过程中, 会根据用户填写的名字直接给他分配可能的国家或地区选项, 以及该国家或地区的国旗, 限制手机号码位数等等。 数据...

文章 2024-06-22 来自:开发者社区

RNN、LSTM、GRU神经网络构建人名分类器(三)

RNN、LSTM、GRU神经网络构建人名分类器(二)+https://developer.aliyun.com/article/1544721?spm=a2c6h.13148508.setting.17.2a1e4f0eMtMqGK 7 构建时间计算函数 d...

RNN、LSTM、GRU神经网络构建人名分类器(三)
文章 2024-06-14 来自:开发者社区

RNN与LSTM:循环神经网络的深入理解

一、引言 在自然语言处理(NLP)和其他涉及序列数据的任务中,循环神经网络(Recurrent Neural Networks,简称RNN)和长短时记忆网络(Long Short-Term Memory,简称LSTM)是两种非常重要的深度学习模型。它们能够处理具有时间依赖...

文章 2024-04-25 来自:开发者社区

PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD

全文链接:http://tecdat.cn/?p=28265  作者:Xiaoyi Sun 预测股票价格,并在合适的时间产生交易策略实现收益,一直是一个热门的问题,到现在为止也提出了很多预测方法。但股票价格 的实时预测是一个难点,需要及时预测价格趋势并作出交易判断。 解决方案 ...

PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD
文章 2024-04-25 来自:开发者社区

Matlab用深度学习循环神经网络RNN长短期记忆LSTM进行波形时间序列数据预测

原文链接:http://tecdat.cn/?p=27279  此示例说明如何使用长短期记忆 (LSTM) 网络预测时间序列。 LSTM神经网络架构和原理及其在Python中的预测应用 LSTM 网络是一种循环神经网络 (RNN),它通过循环时间步长和更新网络状态来处理输入数据。网络状态包含在所有先前时间步长中记住的信息。您可以使用 LSTM...

Matlab用深度学习循环神经网络RNN长短期记忆LSTM进行波形时间序列数据预测
文章 2024-04-23 来自:开发者社区

Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测

原文链接:http://tecdat.cn/?p=27042 该数据根据世界各国提供的新病例数据(查看文末了解数据获取方式)提供。 获取时间序列数据 df=pd....

Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测
文章 2024-04-18 来自:开发者社区

RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测

2017 年年中,R 推出了 Keras 包 _,_这是一个在 Tensorflow 之上运行的综合库,具有 CPU 和 GPU 功能。本文将演示如何在 R 中使用 LSTM 实现时间序列预测。 简单的介绍 时间序列涉及按时间顺序收集的数据。我用 xt∈R 表示单变量数据,其中 t∈T 是观察...

RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测
文章 2024-04-17 来自:开发者社区

R语言KERAS用RNN、双向RNNS递归神经网络、LSTM分析预测温度时间序列、 IMDB电影评分情感

在这篇文章中,我们将回顾三种提高循环神经网络的性能和泛化能力的高级方法。我们将在一个温度预测问题上演示这三个概念,我们使用来自安装在建筑物屋顶的传感器的数据点的时间序列。 概述 安装在建筑物屋顶的传感器的数据点的时间序列,如温度、气压和湿度,你用这些数据点来预测最后一个数据点之后24小时的温度。这是一个相当具有挑战性的问题,它体现了在处理时间序列时遇到的许多常见困难。 我...

R语言KERAS用RNN、双向RNNS递归神经网络、LSTM分析预测温度时间序列、 IMDB电影评分情感
文章 2024-04-17 来自:开发者社区

SARIMA,神经网络,RNN-LSTM,SARIMA和RNN组合方法预测COVID-19每日新增病例

项目挑战 开发一个预测模型,根据一个国家的历史每日COVID-19确诊病例,预测接下来115天当地的每日新增确诊病例。 解决方案 任务/目标 采用多种预测模型实现预测,评估每种模型的性能,找到最小MSE的模型参数(调参) 数据预处理 首先进行EDA(探索性数据分析),理解原始数据集。处理可能的缺失值或异常值(本例中没有缺失或异常)。将数据转换成浮点...

SARIMA,神经网络,RNN-LSTM,SARIMA和RNN组合方法预测COVID-19每日新增病例

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。