【Python深度学习】Tensorflow+CNN进行人脸识别实战(附源码和数据集)

【Python深度学习】Tensorflow+CNN进行人脸识别实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~下面利用tensorflow平台进行人脸识别实战,使用的是Olivetti Faces人脸图像 部分数据集展示如下 程序训练过程如下 接下来训练CNN模型 可以看到训练进度和损失值变化接下来展示人脸识别结果程序会根据一张图片自动去图片集中寻找相似的...

【Python机器学习】卷积神经网络Vgg19模型预测动物类别实战(附源码和数据集)

【Python机器学习】卷积神经网络Vgg19模型预测动物类别实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~典型神经网络在深度学习的发展过程中,出现了很多经典的卷积神经网络,它们对深度学习的学术研究和工业生产斗起到了促进的作用,如VGG ResNet Inception DenseNet等等,很多实际使用的卷积神经网络都是在它们的基础上进行改进的,下面主...

【计算机视觉+CNN】keras+ResNet残差网络实现图像识别分类实战(附源码和数据集 超详细)

【计算机视觉+CNN】keras+ResNet残差网络实现图像识别分类实战(附源码和数据集 超详细)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~一、深度卷积神经网络模型结构1:LeNet-5LeNet-5卷积神经网络首先将输入图像进行了两次卷积与池化操作,然后是两次全连接层操作,最后使用Softmax分类器作为多分类输出,它对手写数字的识别十分有效,取得了超过人眼的识别精度,被应用于邮政编...

PyTorch搭建卷积神经网络(CNN)进行视频行为识别(附源码和数据集)

PyTorch搭建卷积神经网络(CNN)进行视频行为识别(附源码和数据集)

需要数据集和源码请点赞关注收藏后评论区留下QQ邮箱~~~一、行为识别简介行为识别是视频理解中的一项基础任务,它可以从视频中提取语义信息,进而可以为其他任务如行为检测,行为定位等提供通用的视频表征现有的视频行为数据集大致可以划分为两种类型1:场景相关数据集  这一类的数据集场景提供了较多的语...

PyTorch搭建图卷积神经网络(GCN)完成对论文分类及预测实战(附源码和数据集)

PyTorch搭建图卷积神经网络(GCN)完成对论文分类及预测实战(附源码和数据集)

需要数据集和源码请点赞关注收藏后评论区留言~~~一、数据集简介我们将使用Cora数据集。该数据集共2708个样本点,每个样本点都是一篇科学论文,所有样本点被分为7个类别,类别分别是1)基于案例;2)遗传算法;3)神经网络;4)概率方法;5)强化学习;6)规则学习;7)理论每篇论文都由一个1433维的...

PyTorch搭建卷积神经网络(ResNet-50网络)进行图像分类实战(附源码和数据集)

PyTorch搭建卷积神经网络(ResNet-50网络)进行图像分类实战(附源码和数据集)

需要数据集和源码请点赞关注收藏后评论区留言~~~一、实验数据准备我们使用的是MIT67数据集,这是一个标准的室内场景检测数据集,一个有67个室内场景,每类包括80张训练图片和20张测试图片 读者可通过以下网址下载但是数据集较大,下载花费时间较长,所以建议私信我发给你们数据集将下载的数据集解压,主要使...

CNN模型识别cifar数据集

CNN模型识别cifar数据集

构建简单的CNN模型识别cifar数据集。 经过几天的简单学习,尝试写了一个简单的CNN模型通过cifar数据集进行训练。效果一般,测试集上的的表现并不好,说明模型的构建不怎么样。 # -*- coding = utf-8 -*- # @Time : 2020/10/16 16:19 # @Auth...

使用卷积神经网络CNN训练minist数据集(二)

""" 使用CNN训练minist数据集 """ # 导入模块 from tensorflow.keras.utils import to_categorical from tensorflow.keras import models, layers from tensorflow.keras.op...

基于FNC(全卷积神经网络)及PASCAL-VOC数据集做图像语义分割(附代码)

基于FNC(全卷积神经网络)及PASCAL-VOC数据集做图像语义分割(附代码)

引言  本实验基于FNC(全卷积神经网络)及PASCAL-VOC数据集做图像语义分割。图像语义分割(Semantic Segmentation)是图像处理和是机器视觉技术中关于图像理解的重要一环,也是 AI 领域中一个重要的分支。语义分割即是对图像中每一个像素点进行分类,确定每个点的类别(如属于背景...

探索用卷积神经网络实现MNIST数据集分类

探索用卷积神经网络实现MNIST数据集分类

问题对比单个全连接网络,在卷积神经网络层的加持下,初始时,整个神经网络模型的性能是否会更好。方法模型设计两层卷积神经网络(包含池化层),一层全连接网络。选择 5 x 5 的卷积核,输入通道为 1,输出通道为 10:此时图像矩阵经过 5 x 5 的卷积核后会小两圈ÿ...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

相关电子书
更多
利⽤CNN实现⽆需联⽹的图像识别
利⽤CNN实现⽆需联⽹的图像识别
利⽤CNN实现⽆需联⽹的图像识别
立即下载 立即下载 立即下载