文章 2024-04-29 来自:开发者社区

【视频】R语言机器学习高维数据应用:Lasso回归和交叉验证预测房屋市场租金价格

全文链接:http://tecdat.cn/?p=32646 分析师:Junjun Li 在这篇文章中,我们将着重探讨高维数据下的机器学习应用,以房屋市场租金价格预测为例。 在实际生活中,房屋租金作为一个重要的经济指标,被广泛应用于城市规划、财务投资等方面的决策中。然而,如何准确地预测房屋租金价格却一直是一个具有挑战性的问题。 本文将介绍如何使...

【视频】R语言机器学习高维数据应用:Lasso回归和交叉验证预测房屋市场租金价格
文章 2024-04-29 来自:开发者社区

数据分享|R语言聚类、文本挖掘分析虚假电商评论数据:K-MEANS(K-均值)、层次聚类、词云可视化

全文链接:http://tecdat.cn/?p=32540 聚类分析是一种常见的数据挖掘方法,已经广泛地应用在模式识别、图像处理分析、地理研究以及市场需求分析。本文主要研究聚类分析算法K-means在电商评论数据中的应用,挖掘出虚假的评论数据(点击文末“阅读原文”获取完整代码数据)。 本文主要帮助客户研究聚类分析在虚假电商评论中的应用,因此需要从目的出发,搜集相应的以...

数据分享|R语言聚类、文本挖掘分析虚假电商评论数据:K-MEANS(K-均值)、层次聚类、词云可视化
文章 2024-04-29 来自:开发者社区

数据代码分享|R语言回归分析:体脂数据、公交绿色出行与全球变暖2案例

全文链接:http://tecdat.cn/?p=32520 通常在现实应用中,我们需要去理解一个变量是如何被一些其他变量所决定的(点击文末“阅读原文”获取完整代码数据)。 回答这样的问题,需要我们去建立一个模型。一个模型就是一个公式之中,一个因变量(dependent variable)(需要预测的值)会随着一个或多个数值型的自变量(independent ...

数据代码分享|R语言回归分析:体脂数据、公交绿色出行与全球变暖2案例
文章 2024-04-29 来自:开发者社区

数据分享|R语言武汉流动人口趋势预测:灰色模型GM(1,1)、ARIMA时间序列、logistic逻辑回归模型

全文链接:http://tecdat.cn/?p=32496 人口流动与迁移,作为人类产生以来就存在的一种社会现象,伴随着人类文明的不断进步从未间断(点击文末“阅读原文”获取完整代码数据)。 人力资源是社会文明进步、人民富裕幸福、国家繁荣昌盛的核心推动力量。当前,我国经济正处于从以政府主导的投资驱动型的经济“旧常态”向以市场需求为主导的经济“新常态”转型过渡期。 ...

数据分享|R语言武汉流动人口趋势预测:灰色模型GM(1,1)、ARIMA时间序列、logistic逻辑回归模型
文章 2024-04-29 来自:开发者社区

数据分享|R语言交互可视化分析Zillow房屋市场:arima、VAR时间序列、XGBoost、主成分分析、LASSO报告

全文链接:http://tecdat.cn/?p=32427 分析师:Xueyan Liu 在当前海量数据和资源的情况下,面对客户需求,如何找准需求标的和问题核心,并围绕该目标问题挖掘数据、确定市场重要关联因素、分层分类筛选可能关联因素,是当前数据分析运用的关键(点击文末“阅读原文”获取完整数据)。 解决方案 ...

数据分享|R语言交互可视化分析Zillow房屋市场:arima、VAR时间序列、XGBoost、主成分分析、LASSO报告
文章 2024-04-29 来自:开发者社区

数据分享|R语言改进的K-MEANS(K-均值)聚类算法分析股票盈利能力和可视化

全文链接:http://tecdat.cn/?p=32418 大量数据中具有"相似"特征的数据点或样本划分为一个类别。聚类分析提供了样本集在非监督模式下的类别划分(点击文末“阅读原文”获取完整代码数据)。 人们在投资时总期望以最小的风险获取最大的利益,面对庞大的股票市场和繁杂的股票数据,要想对股票进行合理的分析和选择,聚类分析就显得尤为重要。 在本文中...

数据分享|R语言改进的K-MEANS(K-均值)聚类算法分析股票盈利能力和可视化
文章 2024-04-29 来自:开发者社区

数据分享|R语言改进Apriori关联规则挖掘研究西安PM2.5含量与天气因素关系数据可视化

全文链接:http://tecdat.cn/?p=32284 随着社会的发展,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新(点击文末“阅读原文”获取完整代码数据)。 而大数据的意义并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为...

数据分享|R语言改进Apriori关联规则挖掘研究西安PM2.5含量与天气因素关系数据可视化
文章 2024-04-29 来自:开发者社区

数据分享|R语言ARIMA模型分析预测上海空气质量指数AQI时间序列

全文链接:http://tecdat.cn/?p=32265 指数平滑法对于预测来说是非常有帮助的,而且它对时间序列上面连续的值之间相关性没有要求(点击文末“阅读原文”获取完整代码数据)。 但是,如果你想使用指数平滑法计算出预测区间,那么预测误差必须是不相关的, 而且必须是服从零均值、 方差不变的正态分布。即使指数平滑法对时间序列连续数值之间相关性没有要求,在...

数据分享|R语言ARIMA模型分析预测上海空气质量指数AQI时间序列
文章 2024-04-29 来自:开发者社区

R语言nlme、nlmer、lme4用(非)线性混合模型non-linear mixed model分析藻类数据实例(下)

R语言nlme、nlmer、lme4用(非)线性混合模型non-linear mixed model分析藻类数据实例(上):https://developer.aliyun.com/article/1496401 右侧渐近线中的方差估计值是非零的。 ...

R语言nlme、nlmer、lme4用(非)线性混合模型non-linear mixed model分析藻类数据实例(下)
文章 2024-04-29 来自:开发者社区

R语言nlme、nlmer、lme4用(非)线性混合模型non-linear mixed model分析藻类数据实例(上)

原文链接:http://tecdat.cn/?p=23426 混合线性模型,又名多层线性模型(Hierarchical linear model)。它比较适合处理嵌套设计(nested)的实验和调查研究数据(点击文末“阅读原文”获取完整代码数据)。 序言 此外,它还...

R语言nlme、nlmer、lme4用(非)线性混合模型non-linear mixed model分析藻类数据实例(上)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。