单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
1.程序功能描述 单目标问题的FW烟花优化算法求解matlab仿真,对比PSO和GA。最后将FW,GA,PSO三种优化算法的优化收敛曲线进行对比。 2.测试软件版本以及运行结果展示MATLAB2022A版本运行 3.核心程序```for t=1:Iter %计算每个烟花适应度值 for i=1:Npop...

通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
1.程序功能描述分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法.对比其优化收敛曲线。 2.测试软件版本以及运行结果展示MATLAB2022A版本运行 3.核心程序 ```for t=1:tmax t time(t) = t; w = 0.5; for i=1:Pop i...

m基于WOA优化的SVM乳腺癌细胞和正常细胞分类识别算法matlab仿真,对比BP网络,SVM,PSO+SVM
1.算法描述 SVM 是有监督的学习模型,我们需要事先对数据打上分类标签,通过求解最大分类间隔来求解二分类问题。如果要求解多分类问题,可以将多个二分类器组合起来形成一个多分类器。 WOA算法设计的既精妙又富有特色,它源于对自然界中座头鲸群体狩猎行为的模拟, 通过鲸鱼群体搜索、包围、追捕和攻击猎物等过程实现优时化搜索的目的。在原始的WOA中,提供了包围猎物,螺旋气泡、寻找猎物的数学模型...

基于PSO三维极点搜索matlab仿真
1.算法描述 在PSO中,群中的每个粒子表示为向量。在投资组合优化的背景下,这是一个权重向量,表示每个资产的分配资本。矢量转换为多维搜索空间中的位置。每个粒子也会记住它最好的历史位置。对于PSO的每次迭代,找到全局最优位置。这是群体中最好的最优位置。一旦找到全局最优位置,每个粒子都会更接近其局部最优位置和全局最优位置。当在多次迭代中执行时,该过程产生一个解决该问题的良好解决方案,因为粒子会聚...

基于PSO粒子群优化的CNN-GRU的时间序列回归预测matlab仿真
1.算法运行效果图预览(完整程序运行后无水印) 2.算法运行软件版本matlab2022a 3.部分核心程序 ```for i=1:Iter i for j=1:Npeop rng(i+j) if func_obj(x1(j,:))<pbest1(j) p1(j,:) = x1(j,:);%变量 pbest1(j) = func_obj(x1(j,:)); end if pbes...

基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
1.算法运行效果图预览 2.算法运行软件版本matlab2022a 3.部分核心程序 ```for i=1:Iter i for j=1:Npeop rng(i+j) if func_obj(x1(j,:))<pbest1(j) p1(j,:) = x1(j,:);%变量 pbest1(j) = func_obj(x1(j,:)); end if pbest1(j)<gbe...

基于PSO粒子群优化的PID控制器参数整定算法matlab仿真
1.课题概述 基于PSO粒子群优化的PID控制器参数整定。通过PSO不断的优化,使得PID控制器的控制反馈误差逐渐接近0,在完成优化迭代之后,对应的参数,即PID控制器的参数。 2.系统仿真结果 3.核心程序与模型版本:MATLAB2022a ```for jj = 1: Iteration jj for j=1:Npop %速度更新 Vs(j,:) = 0.75*V...

m基于PSO粒子群优化的LDPC码OMS译码算法最优偏移参数计算和误码率matlab仿真
1.算法仿真效果matlab2022a仿真结果如下: 2.算法涉及理论知识概要 Offset Min-Sum(OMS)译码算法是LDPC码的一种低复杂度迭代解码方法,它通过引入偏移量来减轻最小和算法中的量化效应,从而提高解码性能。当应用粒子群优化(PSO)来计算OMS译码算法中的最优偏移参数时,目标是自动找到能够最大化解码性能(如最小化误码率)的偏移量值。 PSO算法由粒子群、个体...

m基于PSO粒子群优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
1.算法仿真效果matlab2022a仿真结果如下: 2.算法涉及理论知识概要 低密度奇偶校验码(Low-Density Parity-Check Code, LDPC码)因其优越的纠错性能和近似香农极限的潜力,在现代通信系统中扮演着重要角色。归一化最小和(Normalized Min-Sum, NMS)译码算法作为LDPC码的一种高效软译码方法,通过调整归一化因子来改善其性能。而基于遗传...

基于PSO优化的CNN-GRU-Attention的时间序列回归预测matlab仿真
1.算法运行效果图预览优化前 优化后 2.算法运行软件版本matlab2022a 3.算法理论概述 时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、长短时记忆网络(Long Short-Term Memory, LSTM)以及注意力机制(Attenti...

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。
MATLAB更多pso相关
大数据开发治理DataWorks
DataWorks基于MaxCompute/Hologres/EMR/CDP等大数据引擎,为数据仓库/数据湖/湖仓一体等解决方案提供统一的全链路大数据开发治理平台。
+关注