【网安AIGC专题】46篇前沿代码大模型论文、24篇论文阅读笔记汇总
写在最前面 本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。 本系列文章不仅涵盖了46篇关于前沿代码大模型的论文,还包含了24篇深度论文阅读笔记,全面覆盖了代码生成、漏洞检测、程...
【网安AIGC专题】46篇前沿代码大模型论文、24篇论文阅读笔记汇总
写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。本系列文章不仅涵盖了46篇关于前沿代码大模型的论文,还包含了24篇深度论文阅读笔记,全面覆盖了代码生成、漏洞检测、程序修复、生成测试等多个应用方向,深刻展示了这些技术如何在网络安全领域中起到革命性作用。同时,本系列还细致地介绍了大模型技术的基础架构、增强策略、关键数据集,以及与网络安全紧密相关的模型安全问题。本....
24 LLM错误代码补全:机器学习顶会NeurIPS‘23 智能体评估:自行构建数据集Buggy-HumanEval、Buggy-FixEval+错误代码补全+修复模型【网安AIGC专题11.22】
写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。一位同学分享了Large Language Models of Code Fail at Completing Code with Potential Bugs《大语言模型在具有潜在错误代码补全中的问题》论文发表在NeurIPS’23,机器学习三大顶会之一。分享时的PPT简洁大方后来重读论文时,发现汇报时的中文....
22LLMSecEval数据集及其在评估大模型代码安全中的应用:GPT3和Codex根据LLMSecEval的提示生成代码和代码补全,CodeQL进行安全评估【网安AIGC专题11.22】
写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。李元鸿同学分享了LLMSecEval: A Dataset of Natural Language Prompts for Security Evaluations《LLMSecEval:用于评估大模型代码安全的自然语言提示数据集》分享时的PPT简洁大方,重点突出LLMSecEval数据集及其在评估大型语言模型....
18LLM4SE革命性技术揭秘:大型语言模型LLM在软件工程SE领域的全景解析与未来展望 - 探索LLM的多维应用、优化策略与软件管理新视角【网安AIGC专题11.15】作者汇报 综述
写在最前面欢迎阅读这个系列中最特殊、也最有趣的一篇文章 —— 《大型语言模型在软件工程中的应用:系统性文献综述》。不仅是对一项创新技术的深入解析,更是对软件工程领域的一次深入的探索。由侯心怡@易忻禾主导的这项研究,汇报时展示了她对该主题论文的全面掌握,思维上闪闪发光。本文汇总了大型语言模型(LLM)在软件工程(SE)领域的广泛应用,涵盖了从程序开发到软件维护,再到项目管理的每一个关键环节,揭示了....
19ContraBERT:顶会ICSE23 数据增强+对比学习+代码预训练模型,提升NLP模型性能与鲁棒性:处理程序变异(变量重命名)【网安AIGC专题11.15】
写在最前面随着大规模代码的崛起,无监督学习成为了提高代码预训练模型性能的有效手段。这些预训练模型在广泛的下游任务中表现出色,如自然语言处理和程序语言处理。例如,像CodeBERT和GraphCodeBERT这样的模型在预训练阶段通过大规模代码数据学到通用的表示,并在下游任务上进行微调,取得了优于传统监督学习方法的成绩。然而,这些模型在面对代码变异等挑战时,鲁棒性仍然有待提高。该论文关注的问题是:....
【网安AIGC专题11.7】17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集(下)
用例和补全流水线ASAP有3个组成部分:一个LLM,一个可用示例池(标记的输入-输出对,例如,带注释的代码),以及一个用于从代码中获取事实的静态分析工具。一个配置文件会指定这些组件。一旦配置完成后,开发人员对函数体Cin(如左图所示)调用ASAP ,并需要一个输出(例如,代码摘要)。 ...
【网安AIGC专题11.7】17ASAP如何更好地改进少样本提示:在LLMs的prompt中添加语义信息,来提高代码摘要生成+代码补全任务的性能。CodeSearchNet数据集(上)
写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。范晓萱同学分享了Improving Few-shot Prompts with Relevant Static Analysis Products《用相关静态分析产品改进少样本提示》论文:https://arxiv.org/pdf/2304.06815.pdf论文12页信息量比较大&...
【网安AIGC专题10.25】9 LIBRO方法(ICSE2023顶会自动化测试生成):提示工程+查询LLM+选择、排序、后处理(测试用例函数放入对应测试类中,并解决执行该测试用例所需的依赖)
写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。万传浩同学分享了软件工程顶级会议ICSE2023文章,来自韩国科学技术院大学的Shin Yoo团队的Large Language Models are Few-shot Testers: Exploring LLM-based General Bug Reproduction《大型语...
【网安AIGC专题11.1】11 Coreset-C 主动学习:特征选择+11种采样方法+CodeBERT、GraphCodeBERT+多分类(问题分类)二元分类(克隆检测)非分类任务(代码总结)
写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。皇甫璟轩同学分享了Active Code Learning: Benchmarking Sample-Efficient Training of Code Models《主动代码学习:样本高效的代码模型训练基准测试》分享时清晰简洁大方学到了benchmark基准和baseline基准线的区别主动学...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。