【ACL2024】阿里云人工智能平台PAI多篇论文入选ACL2024
近期,阿里云人工智能平台PAI的多篇论文在ACL2024上入选。论文成果是阿里云与阿里集团安全部、华南理工大学金连文教授团队、华东师范大学何晓丰教授团队共同研发。ACL(国际计算语言学年会)是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力....
带你读《阿里云产品六月刊》——十四、【CVPR2024】阿里云人工智能平台PAI图像编辑算法论文入选CVPR2024
近期,阿里云人工智能平台PAI发表的图像编辑算法论文在CVPR-2024上正式亮相发表。论文成果是阿里云与华南理工大学贾奎教授领衔的团队共同研发。CVPR(计算机视觉与模式识别会议)是计算机视觉和模式识别领域的顶级国际会议,旨在展示最新的研究进展和技术成就,推动这一领域理论与应用的前沿进展,并通过精选提交的高水平学术论文和实践工作,对学术界和工业界产生深远的影响。此次入选标志着阿里云人工智能平台....
阿里云人工智能平台PAI论文入选OSDI '24
近日,阿里云人工智能平台PAI的论文《Llumnix: Dynamic Scheduling for Large Language Model Serving》被OSDI '24录用。论文通过对大语言模型(LLM)推理请求的动态调度,大幅提升了推理服务质量和性价比。 Llumnix是业界首个能灵活在不同模型实例间重新分配请求的框架;并且,实验表明,与最先进的LLM服务系统相比,...
【CVPR2024】阿里云人工智能平台PAI图像编辑算法论文入选CVPR2024
近期,阿里云人工智能平台PAI发表的图像编辑算法论文在CVPR-2024上正式亮相发表。论文成果是阿里云与华南理工大学贾奎教授领衔的团队共同研发。CVPR(计算机视觉与模式识别会议)是计算机视觉和模式识别领域的顶级国际会议,旨在展示最新的研究进展和技术成就,推动这一领域理论与应用的前沿进展,并通过精选提交的高水平学术论文和实践工作,对学术界和工业界产生深远的影响。此次入选标志着阿里云人工智能平台....
LLM大语言模型数据处理-arXiv
LLM数据处理算法提供了对数据样本进行编辑和转换、过滤低质量样本、识别和删除重复样本等功能。您可以根据实际需求组合不同的算法,从而过滤出合适的数据并生成符合要求的文本,方便为后续的LLM训练提供优质的数据。本文以开源RedPajama arXiv中的少量数据为例,为您介绍如何使用PAI提供的大模型数据处理组件,对arXiv数据进行数据清洗和处理。
LLM大语言模型数据处理-arXiv
LLM数据处理算法提供了对数据样本进行编辑和转换、过滤低质量样本、识别和删除重复样本等功能。您可以根据实际需求组合不同的算法,从而过滤出合适的数据并生成符合要求的文本,方便为后续的LLM训练提供优质的数据。本文以开源RedPajama arXiv中的少量数据为例,为您介绍如何使用PAI提供的大模型数据处理组件,对arXiv数据进行数据清洗和处理。
【AAAI 2024】再创佳绩!阿里云人工智能平台PAI多篇论文入选
近期,阿里云人工智能平台PAI发表的多篇论文在AAAI-2024上正式亮相发表。AAAI(AAAI Conference on Artificial Intelligence)是由国际人工智能促进协会主办的年会,是人工智能领域中历史最悠久、涵盖内容最广泛的国际顶级学术会议之一,也是中国计算机学会(CCF)推荐的A类国际学术会议。会议一直是人工智能界的研究风向标,在学术界久负盛名。 ...
【论文速递】9位院士Science88页长文:人工智能的进展、挑战与未来
【论文原文】:Intelligent Computing: The Latest Advances, Challenges and Future获取地址:https://spj.science.org/doi/10.34133/icomputing.0006摘要:计算是人类文明发展的重要动力。近年来,我们见证了智能计算的兴起。在大数据、人工智能、物联网时代,智能计算的新理论、新架构、新方法、新体....
阿里云人工智能平台PAI多篇论文入选EMNLP 2023
近期,阿里云人工智能平台PAI主导的多篇论文在EMNLP2023上入选。EMNLP是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选意味着阿里...
10月发布的5篇人工智能论文推荐
JudgeLM: Fine-tuned Large Language Models are Scalable Judges https://arxiv.org/pdf/2310.17631.pdf 由于现有基准和指标的限制,在开放式环境中评估大型语言模型(llm)是一项具有挑战性的任务。为了克服这一挑战,本文引入了微调llm作为可扩展“法官”的概念,称为JudgeLM,这样可以在开放式基准场...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。