文章 2025-01-04 来自:开发者社区

PyTorch FlexAttention技术实践:基于BlockMask实现因果注意力与变长序列处理

本文介绍了如何利用torch 2.5及以上版本中新引入的FlexAttention和BlockMask功能来实现因果注意力机制与填充输入的处理。 鉴于目前网络上缺乏关于FlexAttention处理填充输入序列的完整代码示例和技术讨论,本文将详细阐述一种实现方法,该方法同时涵盖了因果注意力机制的实现。 本文不会详细讨论FlexAttention的理论基础,如需了解更多技术细节,建议参考PyTor....

文章 2024-10-13 来自:开发者社区

三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力

本文深入探讨Transformer模型中三种关键的注意力机制:自注意力、交叉注意力和因果自注意力。这些机制是GPT-4、Llama等大型语言模型(LLMs)的核心组件。通过理解这些注意力机制,我们可以更好地把握这些模型的工作原理和应用潜力。 我们不仅会讨论理论概念,还将使用Python和PyTorch从零开始实现这些注意力机制。通过实际编码,我们可以更深入地理解这些机制的内部工作原理。 文章目录....

三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
文章 2024-07-16 来自:开发者社区

注意力机制中三种掩码技术详解和Pytorch实现

注意力机制是许多最先进神经网络架构的基本组成部分,比如Transformer模型。注意力机制中的一个关键方面是掩码,它有助于控制信息流,并确保模型适当地处理序列。 在这篇文章中,我们将探索在注意力机制中使用的各种类型的掩码,并在PyTorch中实现它们。 在神经网络中,掩码是一种用于阻止模型使用输入数据中的某些部分的技术。这在序列模型中尤其重要,因为序列的长度可能会有所不同,且输入的某些部分...

注意力机制中三种掩码技术详解和Pytorch实现
文章 2024-04-03 来自:开发者社区

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

分组查询注意力 (Grouped Query Attention) 是一种在大型语言模型中的多查询注意力 (MQA) 和多头注意力 (MHA) 之间进行插值的方法,它的目标是在保持 MQA 速度的同时实现 MHA 的质量。 这篇文章中,我们将解释GQA的思想以及如何将其转化为代码。 GQA是在论文 GQA: Training Generalized Multi-Query Transform...

大模型中常用的注意力机制GQA详解以及Pytorch代码实现
文章 2024-01-30 来自:开发者社区

Pytorch图像处理注意力机制SENet CBAM ECA模块解读

1. 注意力机制注意力机制最初是为了解决自然语言处理(NLP)任务中的问题而提出的,它使得模型能够在处理序列数据时动态地关注不同位置的信息。随后,注意力机制被引入到图像处理任务中,为深度学习模型提供了更加灵活和有效的信息提取能力。注意力机制的核心思想是根据输入数据的不同部分,动态地调整模型的注意力,从而更加关注对当前任务有用的信息。在图像处理中,注意力机制广泛应用于图像分类、目标检测、图像分割等....

Pytorch图像处理注意力机制SENet CBAM ECA模块解读
文章 2024-01-25 来自:开发者社区

Bert Pytorch 源码分析:二、注意力层

# 注意力机制的具体模块 # 兼容单头和多头 class Attention(nn.Module): """ Compute 'Scaled Dot Product Attention """ # QKV 尺寸都是 BS * ML * ES # (或者多头情况下是 BS * HC * ML * HS,最后两维之外的维度不重要) # 从输入计算 QKV 的过程可...

文章 2023-09-21 来自:开发者社区

解码注意力Attention机制:从技术解析到PyTorch实战

在本文中,我们深入探讨了注意力机制的理论基础和实际应用。从其历史发展和基础定义,到具体的数学模型,再到其在自然语言处理和计算机视觉等多个人工智能子领域的应用实例,本文为您提供了一个全面且深入的视角。通过Python和PyTorch代码示例,我们还展示了如何实现这一先进的机制。关注TechLead,分享AI技术的全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦....

解码注意力Attention机制:从技术解析到PyTorch实战
文章 2023-07-28 来自:开发者社区

图注意力网络论文详解和PyTorch实现

消息(嵌入)通过多个GNN层在图中的节点之间传递。每个节点聚合来自其邻居的消息以更新其表示。这个过程跨层重复,允许节点获得编码有关图的更丰富信息的表示。gnn的一主要变体有GraphSAGE[2]、Graph Convolution Network[3]等。 图注意力网络(GAT)[1]是一类特殊的gnn,主要的改进是消息传递的方式。他们引入了一种可学习的注意力机制,通过在每个源节点和目标节点.....

图注意力网络论文详解和PyTorch实现
文章 2023-06-23 来自:开发者社区

【PyTorch】按照论文思想实现通道和空间两种注意力机制

import torch from torch import nn class ChannelAttention(nn.Module): # ratio表示MLP中,中间层in_planes缩小的比例 def __init__(self, in_plances, ratio=16) -> None: super().__init__() se...

文章 2023-05-23 来自:开发者社区

即插即用 | 超越CBAM,全新注意力机制,GAM不计成本提高精度(附Pytorch实现)

1简介卷积神经网络已广泛应用于计算机视觉领域的许多任务和应用中。研究人员发现,CNN在提取深度视觉表征方面表现良好。随着CNN相关技术的改进,ImageNet数据集的图像分类准确率在过去9年里从63%提高到了90%。这一成就也归功于ImageNet数据集的复杂性,这为相关研究提供了难得的机会。由于它覆盖的真实场景的多样性和规模,有利于传统的图像分类、表征学习、迁移学习等研究。特别是,它也给注意力....

即插即用 | 超越CBAM,全新注意力机制,GAM不计成本提高精度(附Pytorch实现)

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。

相关镜像