图神经网络 —— GNN通用计算管道
前言大家好,我是阿光。本专栏整理了《图神经网络》,内包含了不同图神经网络的原理以及相关代码实现,详细讲解图神经网络,理论与实践相结合,如GCN、GraphSAGE、GAT等经典图网络,每一个代码实例都附带有完整的代码+数据集。正在更新中~ ✨ 我的项目环境:平台:Windows10语言环境:python3.7编译器:PyCharmPyTorch版本:1.11.0PyG版本:2.1.0 项目专栏:....
图神经网络通用框架 —— MPNN消息传递神经网络
前言大家好,我是阿光。本专栏整理了《图神经网络》,内包含了不同图神经网络的原理以及相关代码实现,详细讲解图神经网络,理论与实践相结合,如GCN、GraphSAGE、GAT等经典图网络,每一个代码实例都附带有完整的代码+数据集。正在更新中~ ✨ 我的项目环境:平台:Windows10语言环境:python3.7编译器:PyCharmPyTorch版本:1.11.0PyG版本:2.1.0 项目专栏:....
图神经网络GAT最详细讲解(图解版)
前言大家好,我是阿光。本专栏整理了《图神经网络》,内包含了不同图神经网络的原理以及相关代码实现,详细讲解图神经网络,理论与实践相结合,如GCN、GraphSAGE、GAT等经典图网络,每一个代码实例都附带有完整的代码+数据集。正在更新中~ ✨ 我的项目环境:平台:Windows10语言环境:python3.7编译器:PyCharmPyTorch版本:1.11.0PyG版本:2.1.0 项目专栏:....
用于多关系数据的图神经网络R-GCNs(下)
关系图卷积网络(Relational-GCN)前面的示例描述了GCN在无向和无类型图上的行为。如前所述,更新过程基于以下步骤(在以下说明中,为简单起见,不考虑节点度)。通过将(i)单热点特征矩阵与(ii)权重矩阵相乘,可以实现投影步骤(或线性变换)。(i)2D矩阵(n,n),用于定义表示节点的独热向量。(ii)定义隐藏特征的2D矩阵(n,h)。当前矩阵仅编码一种类型的关系。将邻接矩阵(i)与投影....
用于多关系数据的图神经网络R-GCNs(上)
本文描述如何扩展图神经网络(GNNs)的最简单公式,以编码知识图谱(KGs)等多关系数据的结构。这篇文章包括4个主要部分:介绍了描述KGs特性的多关系数据的核心思想;GNN体系结构中包含的标准组件摘要;gnn最简单公式的描述,称为图卷积网络(GCNs);讨论如何以关系图卷积网络(R-GCN)的形式扩展GCN层,对多关系数据进行编码。知识图作为多关系数据基本图结构包括用于连接节点的无向,无类型和唯....
各种形式的图神经网络的实现和基准测试
本篇文章是论文的介绍性博客:Benchmarking Graph Neural Networks (https://arxiv.org/abs/2003.00982)的介绍性文章,有兴趣的可以下载原文阅读图0:在稀疏的2D张量上运行的GCN(顶部)和在密集的2D张量上运行的WL-GNN(底部)的标准实验。图神经网络(GNN)如今在社会科学,知识图,化学,物理学,神经科学等的各种应用中得到广泛使用....
深度学习入门(9)神经网络Affine与Softmax层的计算图表示方式及其误差反向传播的代码实现
1 Affine与Softmax层的实现1.1 Affine层神经元的加权和可以用Y = np.dot(X, W) + B计算出来。然后,Y 经过激活函数转换后,传递给下一层。这就是神经网络正向传播的流程。神经网络的正向传播中进行的矩阵的乘积运算在几何学领域被称为“仿射变换”。将进行仿射变换的处理实现为“Affine层”。Y = np.dot(X, W) + B,计算图如下:式中WT的T表示转置....
【图神经网络】 - GNN的几个模型及论文解析(NN4G、GAT、GCN)
图神经网络图神经网络(Graph Neural Network,GNN)是指使用神经网络来学习图结构数据,提取和发掘图结构数据中的特征和模式,满足聚类、分类、预测、分割、生成等图学习任务需求的算法总称。Neural Network for Graphs(NN4G)论文信息Neural Network for Graphs: A ContextualConstructive Approach原文地....
深度学习之如何使用Grad-CAM绘制自己的特征提取图-(Pytorch代码,详细注释)神经网络可视化-绘制自己的热力图
众所周知,我们一般是将神经网络理解成一个黑匣子,因此我们往往不知道神经网络特征提取提取的具体是图片的那部分,因此Grad-CAM诞生了,我们只需要少量的代码,Grad-CAM,就可以识别对神经网络模型特征提取图实现可视化,然后使我们清楚地看到神经网络究竟是根据图像的那部分特征进行识别的。CAM我们就不讲了,挺麻烦的还得重新训练网络才可以绘制自己的热力图,因此为了解决CAM的问题,Grad-CAM....
图神经网络之预训练大模型结合:ERNIESage在链接预测任务应用
1.ERNIESage运行实例介绍(1.8x版本)本项目原链接:https://aistudio.baidu.com/aistudio/projectdetail/5097085?contributionType=1本项目主要是为了直接提供一个可以运行ERNIESage模型的环境,https://github.com/PaddlePaddle/PGL/blob/develop/examples/....
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。