**反向传播算法**在多层神经网络训练中至关重要,它包括**前向传播**、**计算损失**、**反向传播误差**和**权重更新**。
反向传播算法(Backpropagation Algorithm)是训练人工神经网络中最为广泛使用的算法之一,特别是在多层前馈神经网络中。以下是反向传播算法的基本工作原理: 前向传播(Feedforward)阶段: 输入数据首先通过网络的输入层进入,经过一系列的隐藏层(如...
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
1 长短期记忆介绍 LSTM 中引入了3个门,即输入门(input gate)、遗忘门(forget gate)和输出门(output gate),以及与隐藏状态形状相同的记忆细胞(某些文献把记忆细胞当成一种特殊的隐藏状态),从而记录额外的信息。 1.1 输入门、遗忘门和输出门 与门控循环单元中的重置门和更新门一样,如下图所示,长短期记忆的门的输入均为当前时间步输入Xt与...
【从零开始学习深度学习】35. 门控循环神经网络之门控循环单元(gated recurrent unit,GRU)介绍、Pytorch实现GRU并进行训练预测
1. 门控循环单元设计 门控循环单元的设计在原始RNN的基础上引入了重置门(reset gate)和更新门(update gate)的概念,从而修改了循环神经网络中隐藏状态的计算方式。 1.1 重置门和更新门 如下图所示,门控循环单元中的重置门和更新门的输入均为当前时间步输入Xt与上一时间步隐藏状态Ht−1,输出由激活函数为sigmoid函数的全连接层计算得到。 ...
ICLR 2024 Oral:用巧妙的传送技巧,让神经网络的训练更加高效
该论文提出了一种新颖的方法来提高神经网络的训练效率,即利用参数对称性进行传送(teleportation)。这一研究由一支优秀的团队完成,他们在论文中详细阐述了如何通过传送来加速神经网络的收敛速度,并改善其泛化能力。 首先,让我们来了解一下参数对称性的概念。在许多神经网络中,不同的参数值可能会导致相...
R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与结果评估可视化
本文演示了训练一个简单的卷积神经网络 (CNN) 来对 CIFAR 图像进行分类。由于本教程使用 Keras Sequential API,因此创建和训练我们的模型只需几行代码。 设置 library(keras) ...
神经网络的基本概念、架构和训练方法
神经网络是一种由多个神经元按照一定的拓扑结构相互连接而成的计算模型。其灵感来自于人类大脑中神经元之间的相互作用。 在过去的几十年里,神经网络一直是人工智能领域中的热门研究方向之一。随着深度学习的兴起,神经网络的应用越来越广泛。本文将详细介绍神经网络的基本概念、架构和训练方法。 基本概念 神经元 神经元是神经网络的基本组成单元。它接收输入信号,通过对输入信号的处理产生输出信号。每个神经元都...
神经网络的训练过程、常见的训练算法、如何避免过拟合
神经网络的训练是深度学习中的核心问题之一。神经网络的训练过程是指通过输入训练数据,不断调整神经网络的参数,使其输出结果更加接近于实际值的过程。本文将介绍神经网络的训练过程、常见的训练算法以及如何避免过拟合等问题。 神经网络的训练过程 神经网络的训练过程通常包括以下几个步骤: 步骤1:数据预处理 在进行神经网络训练之前,需要对训练数据进行预处理。常见的预处理方法包括归一化、标准化等。这...
神经网络训练失败的原因总结 !!
前言 在面对模型不收敛的时候,首先要保证训练的次数够多。在训练过程中,loss并不是一直在下降,准确率一直在提升的,会有一些震荡存在。只要总体趋势是在收敛就行。若训练次数够多(一般上千次,上万次,或者几十个epoch)没收敛,再考虑采取措施解决。 ...
训练神经网络的7个技巧
前言 神经网络模型使用随机梯度下降进行训练,模型权重使用反向传播算法进行更新。通过训练神经网络模型解决的优化问题非常具有挑战性,尽管这些算法在实践中表现出色,但不能保证它们会及时收敛到一个良好的模型。 在本文中,您将了解在训练神经网络模型时如何充分利用反向传播算法的技巧和诀窍。 训练神经网络的挑战在训练数据集的新示例之间取得平衡; 七个具体的技巧,可...
本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。