文章 2023-05-11 来自:开发者社区

【Pytorch神经网络实战案例】30 jieba库分词+训练中文词向量

1 安装jieba1.1 安装pip install jieba1.2 测试import jieba seg_list = jieba.cut("谭家和谭家和") for i in seg_list: printf(i);1.3 词向量在NLP中,一般都会将该任务中涉及的词训练成词向量,然后让每个词以词向量的形式型的输入,进行一些指定任务的训练。对于一个完整的训练任务,词向量的练大多发生...

【Pytorch神经网络实战案例】30 jieba库分词+训练中文词向量
文章 2023-05-11 来自:开发者社区

【Pytorch神经网络理论篇】 24 神经网络中散度的应用:F散度+f-GAN的实现+互信息神经估计+GAN模型训练技巧

同学你好!本文章于2021年末编写,获得广泛的好评!故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现,Pytorch深度学习·理论篇(2023版)目录地址为:CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通....

【Pytorch神经网络理论篇】 24 神经网络中散度的应用:F散度+f-GAN的实现+互信息神经估计+GAN模型训练技巧
文章 2023-05-10 来自:开发者社区

【Pytorch神经网络实战案例】11 循环神经网络结构训练语言模型并进行简单预测

1 语言模型步骤简单概述:根据输入内容,继续输出后面的句子。1.1 根据需求拆分任务(1)先对模型输入一段文字,令模型输出之后的一个文字。(2)将模型预测出来的文字当成输入,再放到模型里,使模型预测出下一个文字,这样循环下去,以使RNN完成一句话的输出。1.2 根据任务设计功能模块(1)模型能够记住前面文字的语义;(2)能够根据前面的语义和一个输入文字,输出下一个文字。1.3 根据功能模块设计实....

【Pytorch神经网络实战案例】11 循环神经网络结构训练语言模型并进行简单预测
文章 2023-05-10 来自:开发者社区

【Pytorch神经网络理论篇】 19 循环神经网络训练语言模型:语言模型概述+NLP多项式概述

同学你好!本文章于2021年末编写,获得广泛的好评!故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现,Pytorch深度学习·理论篇(2023版)目录地址为:CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通....

【Pytorch神经网络理论篇】 19 循环神经网络训练语言模型:语言模型概述+NLP多项式概述
文章 2023-05-10 来自:开发者社区

【Pytorch神经网络理论篇】 05 Module类的使用方法+参数Parameters类+定义训练模型的步骤与方法

同学你好!本文章于2021年末编写,获得广泛的好评!故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现,Pytorch深度学习·理论篇(2023版)目录地址为:CSDN独家 | 全网首发 | Pytorch深度学习·理论篇(2023版)目录本专栏将通过系统的深度学习实例,从可解释性的角度对深度学习的原理进行讲解与分析,通....

【Pytorch神经网络理论篇】 05 Module类的使用方法+参数Parameters类+定义训练模型的步骤与方法
文章 2023-05-08 来自:开发者社区

【Pytorch神经网络实战案例】01 CIFAR-10数据集:Pytorch使用GPU训练CNN模版-方法①

import torch import torchvision from torch import nn from torch.utils.tensorboard import SummaryWriter from torch.utils.data import DataLoader # 取消全局证书验证(当项目对安全性问题不太重视时,推荐使用,可以全局取消证书的验证,简易方便) import ....

文章 2023-05-08 来自:开发者社区

【Pytorch神经网络实战案例】03 CIFAR-10数据集:Pytorch使用GPU训练CNN模版-测试方法

import torch import torchvision from PIL import Image from torch import nn image_path="./test_img/dog.png" image=Image.open(image_path) print(image) #size=406x479 所以需要转换 # png格式是四个通道,除了RGB三通道外,还有一个透明....

文章 2023-04-10 来自:开发者社区

假设测试数据集test_data为随机生成的,并设置小批次。model神经网络已经训练好了,怎么用MSE来做测试

使用均方误差(MSE)作为模型性能的评估指标,可以通过以下步骤对训练好的模型进行测试:加载测试数据集test_data,并将其分成小批次。将小批次的输入数据输入到模型中,并使用模型生成预测值。将预测值与测试集中的目标值进行比较,计算出预测值和目标值之间的均方误差(MSE)。对所有小批次的MSE进行平均,得到模型在测试集上的平均MSE。以下是一些示例代码,可以帮助你完成上述步骤:import to....

文章 2023-03-26 来自:开发者社区

使用matlab深度学习工具箱实现CNN卷积神经网络训练仿真

1.算法描述 深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一...

使用matlab深度学习工具箱实现CNN卷积神经网络训练仿真
文章 2023-03-21 来自:开发者社区

PyTorch 深度学习实战 |用 TensorFlow 训练神经网络

为了更好地理解神经网络如何解决现实世界中的问题,同时也为了熟悉 TensorFlow 的 API,本篇我们将会做一个有关如何训练神经网络的练习,并以此为例,训练一个类似的神经网络。我们即将看到的神经网络,是一个预训练好的用于对手写体数字(整数)图像进行识别的神经网络,它使用了 MNIST 数据集( http://yann.lecun.com/exdb/mnist/ ),这是一个经常被用于研究模式....

PyTorch 深度学习实战 |用 TensorFlow 训练神经网络

本页面内关键词为智能算法引擎基于机器学习所生成,如有任何问题,可在页面下方点击"联系我们"与我们沟通。